A TERPENE-COUMARIN DERIVATIVE FROM ETHULIA CONYZOIDES

FERDINAND BOHLMANN,* SHAFIK BALBAA,† AHMED HALIM† and FATHI HALAWEISH†

*Institute of Organic Chemistry, Technical University Berlin, Strasse des 17. Juni 135, D-1000 Berlin 12, W. Germany; †Faculty of Pharmacy, Mansoura University, Mansoura, Egypt

(Received 5 May 1980)

Key Word Index—Ethulia conyzoides; Compositae; new terpene-coumarin derivative.

We have very recently characterized four isomeric terpene-coumarin derivatives with the formula $C_{20}H_{22}$ - O_5 from the aerial parts of *Ethulia conyzoides* L. [1]. This report deals with the isolation and structural elucidation of another major compound, $C_{20}H_{24}O_6$, representing a hydrated derivative of the above isomers. Its ¹H NMR (see Table 1) and MS data clearly establish structure 1. The stereochemistry at C-5' and C-6', however, has not been determined. The proposed structure was also confirmed through treatment with periodate to afford the

Table 1. ¹H NMR data for 1 (270 MHz, CDCl₃, TMS as internal standard)

Protons	δ	J (Hz)
6-H	7.17 d (br)	6, 7 = 8
7-H	7.37 dd	
8-H	$7.04 \ d \ (br)$	7, 8 = 8
9-H	2.76 s	
1't-H	5.25 d	1't, $2' = 17.5$
1'c-H	5.30 d	1'c, $2' = 10.5$
2'-H	6.23 dd	
4' ₁ -H	2.57 d	$4_1', 4_2' = 15$
4' ₂ -H	2,26 d	
6'-H	3.42 s	
8'-H	1.44 s	
9'-H	1.42 s	
10'-H	1.62 s	

lactone 2 previously obtained from two of the isomers after similar treatment [1,2].

EXPERIMENTAL

The reported extraction and purification procedure [1] was repeated on another batch of plant material, 250 g. The other extract was subjected to column chromatographic analysis using SiO₂ and ether-petrol (= E-P) in increasing order to successively elute the isomeric compounds [1] and lastly with E-P, 1:1, to get 1. The latter was further purified by preparative TLC on SiO₂ to yield 56 mg, colourless crystals, mp. 128-129°, IR $v_{\rm max}^{\rm KBr}$ cm⁻¹: 3450 (OH), 1695, 1600 (coumarin); MS (70 eV, direct inlet): M⁺ m/e 360.157 (2%) (C₂₀H₂₄O₆); 342 (3) (M-H₂O); 327 (2) (342-Me); 302 (4) (M-Me₂CO); 271 (25) (M-HOCHC(OH)Me₂); 229 (65) (271-C₂H₂O):

To 5 mg 1 in 0.5 ml MeOH 10 mg NaIO₄ in 0.1 ml H₂O was added. After 30 min the reaction product was extracted with ether and the residue was crystallized from E-P as colourless crystals, mp. 148° (3 mg), identical with an authentic sample (mp, 1 H NMR).

REFERENCES

- 1. Balbaa, S., Halim, A., Halaweish, F. and Bohlmann, F. (1979) *Phytochemistry* 18, 912.
- 2. Bohlmann, F. and Zdero, C. (1977) Phytochemistry 16, 1092.

177